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1 Expand
1√(4+ 3x) in ascending powers ofx, up to and including the term inx2, simplifying the

coefficients. [4]

2 Solve the equation ln(2x + 3) = 2 lnx + ln 3, giving your answer correct to 3 significant figures. [4]

3 The parametric equations of a curve are

x = sin 2θ − θ, y = cos 2θ + 2 sinθ.

Show that
dy
dx

= 2 cosθ

1+ 2 sinθ
. [5]

4 The curve with equationy = e2x

x3
has one stationary point.

(i) Find thex-coordinate of this point. [4]

(ii) Determine whether this point is a maximum or a minimum point. [2]

5 In a certain chemical process a substanceA reacts with another substanceB. The masses in grams of
A andB present at timet seconds after the start of the process arex andy respectively. It is given that
dy
dt

= −0.6xy andx = 5e−3t. Whent = 0, y = 70.

(i) Form a differential equation iny andt. Solve this differential equation and obtain an expression
for y in terms oft. [6]

(ii) The percentage of the initial mass ofB remaining at timet is denoted byp. Find the exact value
approached byp ast becomes large. [2]

6 It is given that tan 3x = k tanx, wherek is a constant and tanx ≠ 0.

(i) By first expanding tan(2x + x), show that

(3k − 1) tan2x = k − 3. [4]

(ii) Hence solve the equation tan 3x = k tanx when k = 4, giving all solutions in the interval
0◦ < x < 180◦. [3]

(iii) Show that the equation tan 3x = k tanx has no root in the interval 0◦ < x < 180◦ whenk = 2. [1]
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The diagram shows part of the curvey = cos(√x) for x ≥ 0, wherex is in radians. The shaded region
between the curve, the axes and the linex = p2, wherep > 0, is denoted byR. The area ofR is equal
to 1.

(i) Use the substitutionx = u2 to findã p2

0
cos(√x)dx. Hence show that sinp = 3− 2 cosp

2p
. [6]

(ii) Use the iterative formulapn+1 = sin−1(3− 2 cospn

2pn

), with initial valuep1 = 1, to find the value of

p correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]

8 Let f(x) = 4x2 − 7x − 1
(x + 1)(2x − 3) .

(i) Express f(x) in partial fractions. [5]

(ii) Show thatã
6

2
f(x)dx = 8− ln(49

3 ). [5]

9 The linesl andm have equationsr = 3i − 2j + k + λ(−i + 2j + k) andr = 4i + 4j + 2k + µ(ai + bj − k)
respectively, wherea andb are constants.

(i) Given thatl andm intersect, show that

2a − b = 4. [4]
(ii) Given also thatl andm are perpendicular, find the values ofa andb. [4]

(iii) Whena andb have these values, find the position vector of the point of intersection ofl andm.
[2]

10 (a) The complex numbersu andw satisfy the equations

u − w = 4i and uw = 5.

Solve the equations foru andw, giving all answers in the formx + iy, wherex andy are real.
[5]

(b) (i) On a sketch of an Argand diagram, shade the region whose points represent complex
numbers satisfying the inequalities|ß − 2+ 2i | ≤ 2, argß ≤ −1

4π and Reß ≥ 1, where Reß
denotes the real part ofß. [5]

(ii) Calculate the greatest possible value of Reß for points lying in the shaded region. [1]
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